Quantized Vortices in Atomic Bose-einsten Condensates
نویسندگان
چکیده
In this review, we give an overview of the experimental and theoretical advances in the physics of quantized vortices in dilute atomic-gas Bose–Einstein condensates in a trapping potential, especially focusing on experimental research activities and their theoretical interpretations. Making good use of the atom optical technique, the experiments have revealed many novel structural and dynamic properties of quantized vortices by directly visualizing vortex cores from an image of the density profiles. These results lead to a deep understanding of superfluid hydrodynamics of such systems. Typically, vortices are stabilized by a rotating potential created by a laser beam, magnetic field, and thermal gas. Finite size effects and inhomogeneity of the system, originating from the confinement by the trapping potential, yield unique vortex dynamics coupled with the collective excitations of the condensate. Measuring the frequencies of the collective modes is an accurate tool for clarifying the character of the vortex state. The topics included in this review are the mechanism of vortex formation, equilibrium properties, and dynamics of a single vortex and those of a vortex lattice in a rapidly rotating condensate. Preprint submitted to Tsubota et al. (Originally based on Elsevier)2 October 2008
منابع مشابه
observed and to be observed
Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density atomic Bose-Einstein condensates as quantized vortex lines. We discuss unconventional ...
متن کاملSPECIAL FEATURE: PERSPECTIVE Vortices and turbulence in trapped atomic condensates
After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and s...
متن کامل0 Vortices Observed and to be Observed
Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density atomic Bose-Einstein condensates as quantized vortex lines. We discuss unconventional ...
متن کاملVortices Observed and to Be Observed
Linear defects are generic in continuous media. In quantum systems they appear as topological line defects which are associated with a circulating persistent current. In relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids and low-density atomic Bose-Einstein condensates as quantized vortex lines. We discuss unconventional ...
متن کاملSplitting times of doubly quantized vortices in dilute bose-einstein condensates.
Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin, Phys. Rev. Lett. 93, 160406 (2004)10.1103/PhysRevLett.93.160406]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008